Weighted Average Rating (WAR) Method for Solving Group Decision Making Problem Using an Intuitionistic Trapezoidal Fuzzy Hybrid Aggregation (ITFHA) Operator
نویسندگان
چکیده
Intuitionistic Fuzzy numbers each of which is characterized by the degree of membership and the degree of non-membership of an element are a very useful means to depict the decision information in the process of decision making. The aim of this article is to investigate the approach to multiple attribute group decision making with intuitionistic trapezoidal fuzzy numbers, some operational laws of intuitionistic trapezoidal fuzzy numbers are applied. We investigate the group decision making problems in which all the information provided by the decision makers is expressed as decision matrices where each of the elements are characterized by intuitionistic trapezoidal fuzzy numbers and the information about attribute weights are known. We first use the intuitionistic trapezoidal fuzzy hybrid aggregation (ITFHA) operator to aggregate all individual fuzzy decision matrices provided by the decision makers into the collective intuitionistic fuzzy decision matrix. Furthermore, we utilize weighted average rating method and score function to give an approach to ranking the given alternatives and selecting the most desirable one. Finally we give an illustrative example.
منابع مشابه
Power harmonic aggregation operator with trapezoidal intuitionistic fuzzy numbers for solving MAGDM problems
Trapezoidal intuitionistic fuzzy numbers (TrIFNs) express abundant and flexible information in a suitable manner and are very useful to depict the decision information in the procedure of decision making. In this paper, some new aggregation operators, such as, trapezoidal intuitionistic fuzzy weighted power harmonic mean (TrIFWPHM) operator, trapezoidal intuitionistic fuzzy ordered weighted po...
متن کاملTrapezoidal intuitionistic fuzzy prioritized aggregation operators and application to multi-attribute decision making
In some multi-attribute decision making (MADM) problems, various relationships among the decision attributes should be considered. This paper investigates the prioritization relationship of attributes in MADM with trapezoidal intuitionistic fuzzy numbers (TrIFNs). TrIFNs are a special intuitionistic fuzzy set on a real number set and have the better capability to model ill-known quantities. Fir...
متن کاملSome Arithmetic Aggregation Operators with Intuitionistic Trapezoidal Fuzzy Numbers and Their Application to Group Decision Making
Methods for aggregating intuitionistic trapezoidal fuzzy information are investigated. Some operational laws of intuitionistic trapezoidal fuzzy numbers are introduced. Based on these operational laws, some aggregation operators, including intuitionistic trapezoidal fuzzy ordered weighted averaging (ITFOWA) operator and intuitionistic trapezoidal fuzzy hybrid aggregation (ITFHA) operator, are p...
متن کاملArithmetic Aggregation Operators for Interval-valued Intuitionistic Linguistic Variables and Application to Multi-attribute Group Decision Making
The intuitionistic linguistic set (ILS) is an extension of linguisitc variable. To overcome the drawback of using single real number to represent membership degree and non-membership degree for ILS, the concept of interval-valued intuitionistic linguistic set (IVILS) is introduced through representing the membership degree and non-membership degree with intervals for ILS in this paper. The oper...
متن کاملAn Approach to Multiple Attribute Group Decision Making Based on Intuitionistic Trapezoidal Fuzzy Power Generalized Aggregation Operator
With respect to multiple attribute decision making (MADM) problems in which the attribute value takes the form of intuitionistic trapezoidal fuzzy number, a new decision making analysis method is developed. Firstly, some operational laws and expected values of intuitionistic trapezoidal fuzzy numbers, and distance between two intuitionistic trapezoidal fuzzy numbers, are introduced, and the com...
متن کامل